Accelerated PACK-CXL as adjuvant treatment in infectious keratitis

Boris Knyazer, MD
Yonit Krakauer, MD
Tova Lifshitz, MD
Sabine Kling, PhD
Farhad Hafezi, MDPhD

1 Ophthalmology Department, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
2 Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
• Disclosure:

NO FINANCIAL INTEREST
Effects of PACK-CXL in infective keratitis

Cornea

1. Stabilize and increase response of cornea to digestive enzymes of pathogens.

2. Steric hindrance = Increased resistance to digestion

Microorganism

3. Intercalation of the chromophore (riboflavin) with the nucleic acids of the pathogen and inhibition of replication.

4. Damage to the pathogen’s cell walls caused by massive amounts of ROS.
PACK-CXL: published data

238 cases

183 cases: additional treatment
17 cases: solo-therapy1,2

198 cases
Standard “Dresden” protocol

40 cases were treated with A- PACK-CXL 2,3

20 cases-9mW/cm2
20 cases-30mW/cm2

Why to accelerate PACK-CXL?

- Evidence based-
- Save time of the patients and medical staff-
- Save money for the health system-
- Efficacy and Safety-
- More bactericidal features-
Purpose

To evaluate the therapeutic effect of PACK-CXL with riboflavin on therapy-refractory infectious keratitis and compare it to the effect of the standard antibiotic therapy.
Patients and Methods

- A retrospective, single central, interventional, comparative study (may 2013-may 2018).

Inclusion criteria:
Only patients with moderate corneal ulcers with diameters of up to 7 mm.

Exclusion criteria:
suspicion of non-bacterial keratitis, (viral, fungal, Acanthamoeba keratitis)
- descemetocele,
- corneal perforation,
- pregnancy or breast feeding,
- immunosuppressed/immune-compromised patients,
- corneal ulcers that were less than 2.0 mm.

Antimicrobial therapy
- Antimicrobial therapy in both groups consisted of fortified Vancomycin and Ceftazidime eye drops, artificial tears and cyclopedia.
- In both groups, a therapeutic 14-mm diameter soft contact lens (PureVision, Baush&Lomb, USA) was placed after 50% reepithelization was achieved.

Treatment endpoints:
- Day of re-epitelization
- Final UDCVA
- Rate of emergency PKP
- Period of follow up
- # of FU visits
Accelerated PACK-CXL

1. Abrasion of epithelium. (1mm around the borders)
2. Corneal scraping for culture
3. Medio-cross hypo-osmolaric 0.1%, riboflavin (each 2 min for 20 min)
4. UV-A radiation (30mW/cm² For 3 min, Lightmed Ltd.)
5. Rinsing and patching with Ab. ointment

LightLink-CXL lamp, LIGHTMED Ltd.
Results

<table>
<thead>
<tr>
<th>Variables</th>
<th>PACK+Ab group (n=40 pt.)</th>
<th>Antibiotic group (n=30 pt.)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>48.9±26.89</td>
<td>68.29±23.59</td>
<td>0.001</td>
</tr>
<tr>
<td>Gender (Male)</td>
<td>24 (60%)</td>
<td>18 (60%)</td>
<td>0.7</td>
</tr>
<tr>
<td>Origin (Jewish/Bedouin)</td>
<td>28/12 (70/30%)</td>
<td>24/6 (80/20%)</td>
<td>0.42</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>9 (23%)</td>
<td>10 (33.3%)</td>
<td>0.7</td>
</tr>
<tr>
<td>Hypopion</td>
<td>10 (25%)</td>
<td>5 (17%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Initial UCVA (LogMAR)</td>
<td>1.7</td>
<td>1.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Size of corneal ulcer (mm)</td>
<td>3.2±1.3</td>
<td>3.1±1.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Results

- The mean duration to **complete re-epithelization** in days

<table>
<thead>
<tr>
<th>Group</th>
<th>Duration (mean ± SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB group</td>
<td>12.0 ± 4.5 days</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>PACK+Ab group</td>
<td>7.0 ± 2.5 days</td>
<td></td>
</tr>
</tbody>
</table>
Emergency PKP

PACK+Ab group

Resolved cases 100%

Antibiotic group

Emergency PKP 20%

Resolved cases 80%

P < 0.001
Outcome results in the study populations

Treatment endpoints:
- Final UDCVA
- Day of re-epithalization
- Rate of emergency PKP
- Period of follow up
- # of FU visits

<table>
<thead>
<tr>
<th></th>
<th>PACK+Ab group</th>
<th>Ab group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final UCDVA [LogMAR]</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Long of Stay [days]</td>
<td>6.3</td>
<td>8.5</td>
</tr>
<tr>
<td>Follow Up period [months]</td>
<td>2.6</td>
<td>4.4</td>
</tr>
<tr>
<td># FU Visits</td>
<td>7.3</td>
<td>15.1</td>
</tr>
</tbody>
</table>

P=0.3 P=0.06 P=0.001 P=0.001
Pre and Post accelerated PACK-CXL in Gram (+)

- Staphylococcus epidermidis.

before PACK-CXL

S/P 7 Days

S/P 2 weeks

Initial UCVA 6/60

CXL EXPERTS’ MEETING 2018

Final UCVA 6/15
Pre and Post accelerated PACK-CXL in Gram (-)

- Klebsiella pneumoniae, Pseudomonas Aeruginosa and Serratia Morganella

before PACK-CXL

S/P 3 Days

S/P 2 weeks

initial UCVA= CF 1 m

final UCVA= 6/24
Pre and Post accelerated PACK-CXL in Gram (-)

Klebsiella Pneumonia

Before PACK

S/P 10 days
Why the A-PACK-CXL may be better than S-CXL?

Reaction mechanisms

Type I mechanism:

\[
Rf_3^+ + SH \rightarrow (Rf^- + SH^+) \quad \text{ radicals}
\]

\[
2RfH^+ \rightarrow Rf + RfH \quad \text{ Little oxygen consumption.}
\]

\[
RfH_2 + O_2 \rightarrow Rf + H_2O_2
\]

\[
\text{Little oxygen consumption.}
\]

Type II mechanism:

\[
Rf_3^+ + O_2 \rightarrow ^1O_2
\]

\[
SH + ^1O_2 \rightarrow S_{ox}
\]

\[
\text{High oxygen consumption.}
\]

Kamaev P. IOVS 2012
Conclusion.

✓ Promising first results using accelerated PACK-CXL with 30 mW/cm² intensity.

✓ Accelerated PACK-CXL beneficial as an additional treatment in moderate-sized infectious keratitis.

✓ Further research is needed for the optimization of treatment parameters to achieve the maximal antibacteriacidal effect in infectious keratitis.
Thank you