Improving decision making in crosslinking treatments

The DUtch Crosslinking for Keratoconus (DUCK) score

Robert Wisse, MD PhD¹, Daniel Godefrooij, MD¹, Martijn van der Vossen, MD¹, Nienke Soeters, PhD¹, Prof. Carina Koppen, MD PhD², Prof. Rudy Nuijts, MD PhD³

1. Utrecht Cornea Research Group, Dept. of Ophthalmology, University Medical Center Utrecht, NL
2. Dept. of Ophthalmology, Antwerp University Hospital, Belgium
3. Dept. of Ophthalmology, Maastricht University Medical Center, NL
Financial disclosure

Unrestricted grants from the Dr. Fischer Foundation
When is a CXL treatment indicated?

- Global consensus (Delphi method): perform CXL when progression is documented: “no matter what age or level of vision”
How should we define progressive keratoconus?

- >1 D progression in keratometry ($K_{\text{max}}/K_{\text{mean}}$) is the Word$^{1-3}$

- **Pros:**
 - Easy to use parameters with adequate repeatability$^{4-5}$

- **Cons:**
 - Visual acuity, refractive errors, contact lens tolerability, associated symptoms are now not considered
 - Where is the patients perspective? Should we treat the patient or their topograms?

Consequences of treating topograms

Nationwide reduction in the number of corneal transplantations for keratoconus following the implementation of cross-linking

Daniel A. Godefrooij, Renze Gans, Saskia M. Imhof and Robert P. L. Wisse
Department of Ophthalmology, Utrecht Cornea Research Group, University Medical Center Utrecht, Utrecht, The Netherlands

Is only half of the equation!

What is needed?

• A rational weighted compound score that
 – Encompasses relevant clinical domains in progressive KC
 – Takes the patients perspective in consideration
 – Is easy to use

• The DUtch Crosslinking for Keratoconus score
 – Age
 – Subjective changes in quality of vision
 – Changes in UDVA
 – Changes in Refraction (SE)
 – Changes in Keratometry (K_{max})

• 0, 1 or 2 points per item, lead to a 0-10 point score
Conclusion of study results (n=332 eyes)

• Evaluation of longitudinal 2-year cohort of all KC patients

• When applying a 5/10 DUCK score vs. >1D of K_{max} threshold

 18% lower rate of treatment

 11% reduction of under-treatment

 13% lower failure rate
Methods

• Inclusion/exclusion criteria for analysis:
 – All keratoconus patients referred between Jan 1st 2012 & July 1st 2014
 – No cases unsuitable for CXL treatment (too thin, scars etc)

• Data collection
 – UDVA/CDVA, manifest refraction, Scheimpflug tomography
 – Patient experiences / remarks / complaints
 – Treatment characteristics

• Three measurements in time
 1. First consultation
 2. Progression analysis
 3. 12mo after CXL or after last consultation
Results

- 159 / 332 eyes underwent CXL (48%)
Results

- 159 / 332 eyes underwent CXL (48%)
- 129 treatments based on $K_{\text{max}} > 1\text{D}$ in one year
Results

- 159 / 332 eyes underwent CXL (48%)
- 129 treatments based on $K_{\text{max}} > 1$D in one year
- 106 treatments based on DUCK score >5 (18%↓)
Results

• 159 / 332 eyes underwent CXL (48%)
• 129 treatments based on $K_{\text{max}} > 1\text{D}$ in one year
• 106 treatments based on DUCK score > 5 (18%↓)
• 14 cases of progressive KC treated with DUCK (11%)
Discussion

• Large cohort of 332 consecutive KC cases with adequate follow-up

• The DUCK score was evaluated in retrospect
 – CXL treatments were not necessarily based on either criterion
 – Natural course of disease could not be incorporated

• All eyes of all patients were included
 – Complex statistics
 – Multiple imputation used to complete the dataset

• Validation of findings mandatory
 – Multicenter data acquisition to compare & pool data
 – Collaboration with Maastricht & Antwerp
Summary

• Defining keratoconus progression is fundamental in clinical decision making in CXL

• Targeting the right patient for therapy
 – Prevents unnecessary exposure to treatment risks, and
 – Increases overall cost-effectiveness

• Adhering to the DUCK-score as a weighted compound measurement of keratoconus progression lead to
 – 18% less treatments performed in likely low-risk cases
 – 11% more treatments performed in potential progressive cases
 – 13% lower treatment failure rates due to a higher threshold
