Basics of cross-linking Fluence, illumination, beam profile

Eberhard Spoerl

University Eye Hospital Dresden (Direktor: Prof. Dr. med. Lutz E. Pillunat)

Definitions

- Irradiance: E=power/area [mW/cm²] (light intensity) Light power per area example: 3 mW/cm² to 30 mW/cm²
- Irradiation dose: (light fluence)
 Iight energy per unit area example: 5.4J/cm² to 10J/cm²
- Continuous irradiation
- Pulsed irradiation:

example: 1s on/1s off; 10s on 10s off

Absorption spectrum of Riboflavin (Vitamin B2)

366 nm 445 nm

According to the absorption peak the wavelength was choosen to 365-370 nm

Homogeneous illumination

A clinically used light source must guarantee a perfect homogeneity of the irradiance.

Hot spots may cause localized endothelium cell damage, especially in thin corneas.

- Only the cornea is irradiated, sclera and limbus are not treated.
- Due to the fluorescence the irradiated area is visible.

Irradiation of Limbus?

safe	damage
rabbit limbal epithelial cells	human limbal epithelial cells
double-standard fluence 10.8 J/cm ²	reduced cell expansion
no changed regenerative capacity	reduced regenerative capacity
eccentric CXL may be performed safely in PMD	induced apoptosis,
Richoz O et a. The effect of standard and high-fluence CXL on cornea and limbus. IOVS 2014;55:5783-7	Thorsrud A et al. CXL in vitro: inhibited regeneration of human limbal epithelial cells after riboflavin-ultraviolet-A- exposure. J Cataract Refract Surg 2012;38:1072-6

Avoid riboflavin+UVA irradiation on the limbus during CXL.

Irradiation and distance

- Important is the fluence at the corneal surface.
- Adjust the recommended distance

Accelerated CXL

- Accelerated CXL = shorter treatment time (no information about irradiance)
- Increase UVA intensity and reduce irradiation time while maintaining the total amount of fluence (5.4 J/cm²)
- Optimize the beam profile according to the corneal thickness distribution

Different types of CXL treatments regarding the irradiation devices

Aim: reduced time and increased efficecy

Low fluence <5.4J/c	m²	standard fluence 5.4	J/cm ²	hi	gh fluence >5.4 J/cm²
low fluence 3.2J/cm ² - 5.4J/cm ² thin corneas	2	Standard CXL 3 mW/cm ² 30 min fluence 5.4 J/cm ²			high fluence 7.2J/cm ² - 10J/cm ² customized CXL
High intensity accelerated CXL (same fluence of 5.4 J/cm ²) Bunsen-Roscoe reciprocity law 9 mW/cm ² 10 min; 18 mW/cm ² 5 min 30 mW/cm ² 3 min					
	Puls	sed accelerated C> 30mW/cm ² 6 min Fluence 5.4J/cm ²	۲L	Pul	sed accelerated CXL with high fluence 30mW/cm ² 8 min Fluence 7.2J/cm ²

KERA-X (Peschke)

Devices with higher irradiance

(second generation of cross-linking devices)

Beam profile

Higher energy in the periphery for deeper corneal stromalpenetration - higher efficacy?same treatment: time 10 min

1.4 1.2 1 0.8 0.6 0.4 0.2 4 3 2 4 8 1 2 3 4 5 3 Reduct UV-illumination Optimized beam profile DEMARCATION UND

Optimized Beam Prolife

Different demarcation lines but same clinical effect (Herber, 2015)

Mrochen et al. 2014

Whole beam profile or customized beam profile

keratoconus

Local change of the cornea	Change of the whole cornea
local epithelium changes	Thinning of peripherial lamellae
thinnest point	Corneal thickness is also thinner in periphery
Breaks in Bowman membrane	Genetic component
local biomechanical changes	

Customized beam (fluence-time) profile

Profile consist of concentric superposition of 3 circular areas Only the apex is irradiated.

Seiler TG, Fischinger I, Koller T, Zapp D, Frueh BE, Seiler T. Customized corneal cross-linking one year results. Am J Ophthalmol. 2016;166:14-21

Customized fluence

For thin corneas the fluence can be reduced according the stromal thickness.

Crosslinking effect

- pulsed high intensity CXL
 (7.2J/cm²; 30mW/cm²; 8 min; 10s/10s)
- high intensity CXL (7.2J/cm²; 30mW/cm²; 4 min)
- standard CXL (5.4J/cm²; 3mW/cm²; 30 min)
 - high intensity CXL (5.4J/cm²; 30mW/cm²; 3 min)

Aldahlawi NH. Enzymatic resistance of corneas crosslinked using riboflavin in conjunction with low energy, high energy, and pulsed UVA irradiation modes. IOVS 2016;57:1547-52

Demarcation line

Demarcation line represents the transition zone betweenacellular (treated) and cellular (untrreated) corneal stroma.It is a tool for assessment of extent of CXL (not proven, only postulated)

Wittig-Silva J Refract Surg. 2013;29(6):410-416

Depth of demarcation line

	Depth in µm	irradiance	time
Standard CXL	350.8±49.3 294.2±51.2	3 mW/cm ²	30 min
Hyposomolar Riboflavin	262.9±45.6	3 mW/cm ²	30 min
Accelerated CXL	288.5±42.4 160 (150-180)	9 mW/cm ² 30 mW/cm ²	10 min 4 min
Pulsed CXL	200 (190-215)	30 mW/cm ²	8 min
Transepithelial CXL (BAC)	150	3 mW/cm ²	30 min
Iontophoresis CXL(without compensation)	212±36	10mW/cm ²	9 min

Yam. J. Corneal Collagen Cross-linking Demarcation Line Depth Assessed by Visante OCT After CXL for Keratoconus and Corneal Ectasia. *J Refract Surg.* 2012;28(7):475-481.

Kymionis. Corneal stroma demarcation line after standard and high-intensity collagen cross-linking determined with anterior segment optical coherence tomography. JCRS 2014:40:736–40

Depth of demarcation line for several CXL techniques

demarcation depth= 300-0.12x(irradiance)²

Standard deviation =40µm

Summary

- Determine the irradiation,
 the irradiation time,
 adjust the recommended distance
- Do not irradiate the limbus
- The depth of the demarcation line as a measure of the CXL effect depends on the irradiation time.

