Evaluation of topical therapeutic corneal tissue cross-linking using sodium hydroxymethylglycinate by intravital confocal microscopy in rabbit

M.Z. Zyablitskaya, A. Takaoka, T. Nagasaki, S. L. Trokel, D.C. Paik Department of Ophthalmology Columbia University, New York, NY USA

December 3
Zurich, Switzerland 2016

Columbia university owned related intellectual property:
US issued patents no: 8,466,203 and no: 9,125,856, and international patent pending PCT/US2015/020276

Supported in part by: Research to Prevent Blindness, the Bjorg & Stephen Ollendorf Fund, and by National Institutes of Health Grants NCRR UL1RR024156, NEI P30 EY019007, and NEI R01EY020495
Introduction

In order to achieve better clinical results treating corneal ectasia, we are developing a practical treatment with a chemical agent – Sodium hydroxymethyl glycinate (SMG) using the following methods:

- Glycine derivative
- Cosmetic Preservative
- Non-mutagenic
- Formaldehyde releaser

Sodium hydroxymethyl glycinate

Despite the proven success of riboflavin photochemical (CXL) corneal stabilization in therapy of keratoconus, several drawbacks remain. This study evaluates the use of a candidate topical therapeutic tissue cross-linking agent that is in current use as a cosmetic preservative.

Hydrogel Contact lens

Viscous eyedrops

Vacuum reservoir solution
Effect of the treatment is evaluated with microscopy and biomechanical tests.

HRT-Rostock Cornea Module

Changes observed in 2 stromal layers:
- 60 um
- 170 um

Biomechanical (Inflation) testing

Measures corneal strength by inflation followed by topographic analysis.
Changes in the cornea treated with reservoir are similar to CXL

The parameters for non-toxic cross-linking were defined [3% solution of SMG for 5 minutes]. Confocal microscopy identified 3 major patterns of keratocyte change:

- Anterior stromal keratocyte apoptosis occurred within the first few days of the initial treatment,
- Mid stromal keratocyte activation (spindle-like) occurred from weeks 1-3,
- Syncytial-like anterior stromal keratocyte activation occurred beginning at week 3.

6 days
Control Treated
2 weeks
Control Treated
2,5 months
Control Treated
Before the treatment 3 days after the treatment

Viscous eyedrops (VE)

- Control
- Treated

Vacuum reservoir solution (CR)

- Control
- Treated

Hydrogel Contact lens (CL)

- Control
- Treated

Biomechanical tests results are pending.

Our previous experiments showed that these treatment conditions promote crosslinking and increase strength of the cornea.

Corneal thickness, endothelial cell density, and epithelial defect changes were not significantly affected.
Conclusion
Topical application of a 3% SMG solution (for 5 minutes) via a corneal reservoir method appears to be safe to the rabbit cornea and induces a wound healing response in the corneal stroma. Similar changes by confocal microscopy have been reported for UVA-riboflavin therapy (CXL) albeit at later time points. This method holds promise for clinical use since neither epithelial debridement nor UVA irradiation are necessary.

References