Epithelium on Cross-linking and Iontophoresis

Professor David O’Brart MD FRCS FRCOphth
Consultant Ophthalmic Surgeon, St. Thomas’ Hospital, London
Professor of Ophthalmology and Corneal Science, King’s College, London

Financial disclosures related to this lecture: Fight for sight small grant award 2014
Epithelium-off Riboflavin CXL

• Wollensak AJO 2003;135:620
• Multiple published case series
• 6-24 mth follow-up, 100s treated eyes
• Including advanced KC*, paediatric cases**, PMD ***
 • Caporossi JCRS 2006;32(5):837-45.
 • Vinciguerra Ophthal 2009;116(3):369-78.
 • Henriquez Cornea 2011;30(3):281-6
 • Asri JCRS. 2011;37(12):2137-43.
 • Hersh JCRS 2011;37(1):149-60.
 • Arora JRS 2012;28(11):759-62 *
 • Vinciguerra Am J Ophth 2012;154(3):520-6. *
 • Ivarsen Cornea. 2013;32(7):903-6. **
 • Spadea JRS 2010;26(5):375-7 ***
 • Hassan Indian J Ophth 2013 10 ***
 • Bayraktar Case Rep Ophthalmol Med. 015:840687 ***

• Stabilization in 90-95%
• Few complications
• Typically significant improvements in
 • Vision/Topographic indices
 • Higher order aberrations
Epithelium off CXL: Randomized Controlled Studies

O’Brart *Br J Ophth* 2011;95:1519
- Bilateral RCT, 18mth f-u, 22 patients
- Treated - Improved CDVA, reduced SimK, astig, RMS, coma, Sph Ab, 2nd astig, pentafoil (p<0.05)
- Untreated Eyes - Worsening of refractive astigmatism p<0.005

- 46 Treated eyes - Reduction in Kmax p<0.001, Improvement in UCVA, CVDA p<0.01
- 48 Control eyes, 3 yr f-u - Increase Kmax p<0.001 cylinder p<0.02, Decrease in UCVA p<0.05

Lang *BMC Ophthalmol.* 2015;15:78
- 29 eyes, 15 treated, avg f-u 3 years
- Treated - Ref power reduced by 0.35 +/- 0.58 D/yr.
- Untreated eyes - Increase of 0.11 +/- 0.61 D/yr - significant difference p<0.02

- Bilateral, RCT 26 eyes, 12 mth f-u
- Treated - K-max reduced by 0.22D, CDVA improved
- Untreated - Kmax increased by 0.41 D, CDVA decreased - (P < 0.02)

Sharma *Int Ophthalmol.* 2015 Feb 24
- RCT with sham treatment control, 43 eyes, treatment (23), sham (20), 6mth f-u
- Improvements in UDVA, Ref Cyl, Kmax (p<0.01)
- Sham group no changes.
Epithelium off CXL: 7-10 year follow up

• Theuring *Ophthalmologe* 2015;112(2):140
 - 30 eyes 20 patients 10yr f-u
 - Kapex -7D (p<0.001), Kmax -4D (p<0.001), Kmin -3D(p<0.001)
 - BCVA -0.13 LogMAR (p<0.005)
 - 2 eyes progressed
 - No long-term loss of transparency

• O’Brart *AJO* 2015 160(6):1154-63
 - 36 eyes 36 pts 7yr fu
 - KC stabilized in 100%
 - Kmax -0.9D (p<0.0001), Kmean -0.74DD (p<0.0001)
 - UCVA/CDVA improved (p<0.001)
 - 4 eyes (11%) lost 1 line of UCVA
 - 22 (61%) gained 1-4 lines of UCVA
 - 3 eyes (8.5%) lost 1 line CDVA
 - 15 (42%) gained 1-4 lines of CDVA
 - SEQ +0.78D (p<0.005) 8 eyes (22%) >=+2.0D
 - RMS, Coma, 2° Astig improved (p<0.005)
 - No sight threatening complications
 - 24% untreated eyes progressed
 - 7 year compared to 5 year
 - Improvements in CDVA (p<0.01), trefoil (p<0.05)
Epithelium-off CXL:
Post-operative Recovery and Complications

But

- Severe post-operative pain +++
 - 24-48 hours
- Blurred vision
 - 2-4 weeks
 - Worse at 1mth, return 3mth
- No contact lens wear
 - 3-4 weeks
- Sight-threatening complications
 - Haze, Scarring
 - Infectious, non-infectious keratitis
 - Persistent corneal oedema
 - Excessive flattening
Epithelium On CXL

• Less pain
• Faster visual recovery
• Less risk of infection
• Reduced risk of:
 • Stromal scarring/corneal melt
 • Reduced epithelial/stromal cytokine interaction
 • Stromal oedema/Endothelial damage
 • Thicker overall corneal thickness
 • Reduced peri-operative dehydration/thinning

• Riboflavin- poor lipid solubility
• Pre-clinical and clinical studies
 • Epithelium removed
 • Facilitates riboflavin stromal absorption
Epithelium On CXL

- Modification of Epithelial permeability
 - Mechanical
 - Partial epithelial disruption
 - Chemical
 - Local anaesthesia, BACS, EDTA, TASS, channel forming peptides
 - Electrical
 - Iontophoresis

- Modification of Riboflavin Solution
 - Without dextran
 - Hypo-osmolar
 - Higher concentration

- Modification of application
 - Increase application time
 - Remove riboflavin from epithelium

- Modification of UV dosage
 - Increase due to epithelial absorption
Epithelium-on CXL: Chemical Enhancement
Comparative Studies: Against

Al Fayez *Cornea*. 2015; 34 Suppl 10:S53
• RCT, 70 pts, 3 yr f-u
• Epi-off: Kmax decreased ave 2.4 D, no progression
• Epi-on: Kmax increased ave 1.1 D, 55% progression

Yuksel J *Ocul Pharm Ther*. 2015;31:296
• 78 eyes epithelial signs and pain scores
• Longer epithelialisation in epi-on (p<0.001)
• Pain scores higher in epi-on day1 (p<0.001)

• Gatziofias, Hafezi, Raiskup, Speorl, O’Brart *JRS*. 2016 Jun 1;32:372
 • Medicross TE (Ribflavin 0.25%, BACS 0.01%)
 • (47.6%) epithelial defect
 • 5 (23.8%) severe punctate keratopathy

Epithelial cell lysis observed with Paracel
Epithelium-on CXL: Chemical Enhancement
Comparative Studies: Against

Soeters *AJO 2015;159:821*
- RCT
- Ricolin TE 35 eyes, Epi-off 26 eyes 1yr f-u
- Reduction Kmax epi on, no diff epi-off
 - Significant difference between groups (p<0.05)
- Better improvement in CDVA in epi-on (p<0.05)
- 23% progression epi-on (Kmax >1D)
- 15% epi-off complications (scarring, HSK, infiltrates)

Kocak *J Fr Ophtalmol. 2014;37:371*
- Retrospective study, 12+ mth Follow-up
- Greater flattening of cone apex in epi-off eyes (p<0.0005)
- Progression (>1D apical K) in 65% epi-on eyes compared to 11% in epi-on (p<0.0001)
- Epi-off self-limiting corneal oedema
Epithelium-on CXL: Chemical Enhancement
Literature Review Studies: Against

Shalchi *Eye* 2015;29:15
Literature review, 44 epi-on, 5 epi-off studies analyzed

<table>
<thead>
<tr>
<th></th>
<th>Epithelial removal</th>
<th>Transepithelial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scar formation</td>
<td>0 – 8.6%</td>
<td>0%</td>
</tr>
<tr>
<td>Infection</td>
<td>0 – 2.9%</td>
<td>0%</td>
</tr>
<tr>
<td>Loss of CDVA</td>
<td>0 – 27%</td>
<td>0%</td>
</tr>
</tbody>
</table>
CXL: Partial Epithelial Disruption
Comparative studies

Hashemi *J Refract Surg.* 2015;31:110
- Retrospective comparative study
- 80 eyes 65 patients, 12mth f-u
- No diff in improvements in UDVA, SEQ
- Better improvement in CDVA in partial group (p<0.001)
- Less reduction in Kmax, Mean K in partial group (p<0.05)
- Greater reduction in pachymetry in complete group (P<0.01)

- RCT 44 eyes 22 patients
- No diff in haze, refraction, visual acuity
- Total removal improvement of K-max/Q-value (P<0.01)
- Partial removal better improvement of CDVA (P<0.01)
O’Brart et al, 18 month outcomes of CXL using grid-pattern epithelial scratches and Ricrolin TE®

- 28 eyes, 26 KC, 2 post-LASIK
- 18-24mth follow-up
- Pain 24-48 hours, epithelial closure by 1 wk
- Contact lens wear 2-3 weeks
- KC stabilized in 25 eyes (89%)
- UCVA/CDVA improved (p<0.05)
- Apex power reduced 1.3D (p<0.0005)
- High order aberrations improved (p<0.05)
- No eyes lost >1 line CDVA
- But 5 failures >2 years

Alhamad, O’Brart JCRS 2012;38:884.
Stroma begins

Epithelium-on CXL: Limited Riboflavin Absorption
2-photon fluorescence microscopy: ex-vivo rabbit model

Transepithelial Riboflavin Absorption in an Ex Vivo Rabbit Corneal Model
Epithelial absorption of UV
- Kolozsvári IVOS 2002;43:2165-8

UVA absorption of Riboflavin within epithelium
- Will mask UVA stromal absorption
- Impair efficacy of CXL
- Increased UVA energy/exposure time (≥20%)
- Optimum BSS epithelial wash out protocol
Epithelium-on CXL: Iontophoretic Delivery
Clinical Studies

Riboflavin suitable for iontophoresis

• Water soluble
• Negatively charged at physiological pH

• 22 eyes 10 min 1mA
• 12 mths 22 eyes of 19 pts
 • Kmax reduced by 2D (p<0.005)
 • Kmean reduced by 2.35D (p<0.005)

Vinciguerra JRS 2014;30;746
• 20 eyes (20 pts) 12 mth f-u, 5min 1.0mA 0.1% riboflavin
• CDVA improved (p<0.05)
• Stable Keratometry, HoAs, pachymetry, ECC

• 11 pts (15 eyes), 6 mths f-u, 0.1% riboflavin, 5 min 1mA
• Improved visual and topo parameters
• Corneal demarcation line 288µm

Buzzonetti Cornea 2015;34:512
• 14 paediatric eyes (14 pts) 15mth f-u
• CDVA improved (p<0.005)
• Demarcation line 180um
Epithelium-on CXL: Iontophoretic Delivery

• Current protocols
 • Riboflavin 0.1% and 1mA for 5-10min

• Two stage procedure
• Drug deposition - Epidermis/epithelium
• Drug diffusion
 • Concentration gradient
 • Novruzlu Cornea. 2015;348:932
 • 0.2% Riboflavin 1mA 10min rabbit eyes
 • Better absorption than chemical enhancement

• Time dependent
• Chemical enhancement of Iontophoresis
 • Fang J Control Release 1998;54:293
 • Enhancement of iontophoresis with BACS

0.1% 5min 1mA Increased time and concentration
Stromal riboflavin absorption using new and existing delivery protocols for corneal cross-linking
Comparison of different iontophoresis protocols for transepithelial corneal cross-linking using two-photon fluorescence microscopy

Gore, O’Brart, Allen et al IVOS 2015;56(13):7908

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MedioCross TE</td>
<td>MedioCross TE</td>
<td>Ricrolin+ 0.25%</td>
<td>Ricrolin+ 0.25%</td>
<td>Ricrolin+ 0.1%</td>
<td>Vibex Rapid</td>
<td>Vibex Rapid</td>
<td>Vibex Rapid</td>
</tr>
<tr>
<td></td>
<td>1 mA 5 min</td>
<td>1 mA 5 min</td>
<td>1 mA 5 min</td>
<td>1 mA 10 min</td>
<td>1 mA 5 min</td>
<td>1 mA 5 min</td>
<td>1 mA 5 min</td>
<td>1 mA 5 min</td>
</tr>
<tr>
<td></td>
<td>5 min</td>
<td>5 min</td>
<td>5 min</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.5 mA 5 min</td>
<td>-</td>
<td>0.5 mA 5 min</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5 min</td>
</tr>
</tbody>
</table>

Control Vibrax - 30 min - - -

<table>
<thead>
<tr>
<th>Control</th>
<th>Stroma</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DM</td>
<td></td>
</tr>
</tbody>
</table>

[Graph showing RiboFlavin concentration vs. corneal depth]
Epithelial on CXL: Iontophoresis
Modified Iontophoresis protocol RCT

• Fight for Sight Grant
• Randomized bilateral study
• 46 patients (92 eyes)
• Epi off vs iCXL (modified extended protocol)
• Accelerated CXL 9mw/cm² for 11min
• ISRCT No: 04451470

• 49% epithelial defect in iCXL
 • No BC/L
 • (Cacicol, Amnion)

• 12 months
 • 34 iCXL, 37 epi-off
 • UCVA, CDVA, SEQ, Cyl, K1, K2, Astig
 • No diff between treatments
 • Except reduced pach in Epi-off (p<0.01)
 • Not in iCXL
 • Trend to greater reduction steepest K in iCXL
 • -0.36D vs -0.17D
 • Tend to greater Reduction in Tomographic Astig in iCXL
Epithelial on CXL: Iontophoresis
Modified Iontophoresis protocol RCT

• 18 month follow-up
• 29iCXL, 25 epi-off

• iCXL
 • -0.5D reduction Steepest K (p=0.1)
 • -1.2 reduction in Kmax (p<0.03)
 • Reduction in Topographic astig -0.52D (p<0.04)
 • No eye progressed (Kmax >1.5D) (none >1.0D)
 • Index of Height Decentration improved (p<0.0005)
 • Index of vertical asymmetry reduced (p<0.03)
 • Central pach no diff,
 • Thinnest pach reduced (p<0.05)

• Epi-off
 • -0.4D reduction Steepest K (p<0.02)
 • -1.0D reduction in Kmax (p=0.002)
 • One eye progressed (Kmax increased by 2.0D, mean K only 0.45D)
 • ISV, IVA, IHD, KI improved (p<0.02)
 • Reduced central and thinnest pachymetry (p<0.02)
Epithelial on CXL: Conclusions

• Comercially available protocols
 • Limited efficacy compared to epi-off

• Efficacy limited by
 • Stromal riboflavin absorption
 • Epithelial riboflavin masking UV absorption

• Chemical enhancers
 • Associated with epithelial damage
 • Limited stroma Riboflavin uptake

• Modified iontophoretic protocols
 • Increased stroma absorption
 • Up to 80% epi-off
 • Encouraging results with RCT

• Optimization of epi-on protocols
 • Accurate methodology to assessing CXL efficacy
 • Optimal riboflavin stroma concentration
 • Optimum stromal UVA dosage