MULTIPHOTON TOMOGRAPHY: A NEW IMAGING MODALITY FOR CORNEAL EVALUATION

A. Batista1,2, H. G. Breunig1, T. Hager3, B. Seitz3,4, A. M. Morgado5, K. König1,2

1 JenLab GmbH, Jena, Germany.
2 Saarland University, Department of Biophotonics and Laser Technology, Saarbruecken, Germany.
3 Saarland University, Department of Ophthalmology, Medical Center, Homburg/Saar, Germany.
4 Lions Cornea Bank Saar-Lor-Lux, Trier/Westpfalz, Medical Center, Homburg/Saar, Germany.
5 University of Coimbra, Institute of Biomedical Research in Light and Image, Coimbra, Portugal.

December 3rd, 2016
PURPOSE

- To evaluate the corneal cells metabolic state and the stroma structural organization using multiphoton tomography.

INTRODUCTION

- The cornea is severely affected by dysfunctions and dystrophies → second major cause of blindness worldwide.

- A new diagnostic method capable of providing information on tissue metabolic state and structural organization is needed.

The determination of metabolic cofactors, NAD(P)H and flavins, **autofluorescence lifetime** provides information on the cells’ metabolism.

→ Independent of the molecular concentration
→ Sensitive to the fluorophore microenvironment

Corneal stroma structural organization can be assessed using **second-harmonic generation (SHG)** imaging of the collagen fibrils.

→ High-resolution and high-contrast imaging modality
→ Photobleaching and photodamage are absent
METHODS

MPTflex

- The feasibility to characterize human corneas, unsuitable for transplantation, was assessed using the clinical certified multiphoton tomograph – MPTflex.

- Non-invasive
- Label-free
- Sub-cellular resolution

- 80 MHz NIR Ti:Sapphire 100 fs tunable laser
- Excitation wavelengths: 760 nm (NAD(P)H) 850 nm (Flavins)
RESULTS
CORNEAL LAYERS

- Using the **autofluorescence intensity** of endogenous fluorophores and SHG all corneal layers can be identified.

3D REPRESENTATION OF THE CORNEA

- **Epithelium**
 - Superficial cells
 - Wing cells
 - Basal cells

- **Interface**

- **Bowman’s Layer**

- **Stroma**

- **Descemet’s Membrane**

- **Endothelium**
RESULTS

CORNEAL METABOLISM

- Metabolic information can be retrieved from the autofluorescence of both metabolic cofactors: **NAD(P)H** (excitation at 760 nm) and **flavins** (excitation at 850 nm).

<table>
<thead>
<tr>
<th>Eλ [nm]</th>
<th>τ_m [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelium</td>
<td></td>
</tr>
<tr>
<td>760 (NAD(P)H)</td>
<td>1.01 ± 0.09</td>
</tr>
<tr>
<td>850 (Flavins)</td>
<td>0.77 ± 0.16</td>
</tr>
<tr>
<td>Stroma</td>
<td></td>
</tr>
<tr>
<td>760</td>
<td>1.35 ± 0.12</td>
</tr>
<tr>
<td>Endothelium</td>
<td></td>
</tr>
<tr>
<td>760 (NAD(P)H)</td>
<td>1.01 ± 0.11</td>
</tr>
<tr>
<td>850 (Flavins)</td>
<td>0.81 ± 0.04</td>
</tr>
</tbody>
</table>

τ_m of NAD(P)H and flavins

Indirect measure of cells’ metabolism
RESULTS

CORNEAL STRUCTURAL ORGANIZATION

- SHG shows the structural organization of the stroma.

3D REPRESENTATION OF THE STROMA

CONCLUSION

- Multiphoton tomography can be used to efficiently evaluate the human cornea morphology, metabolic state, and stroma structural organization.

- It may be used to diagnose pathologies and to evaluate the corneal status before transplantation or after clinical procedures such as corneal collagen crosslinking.

Funded by the European Union

This work has received funding from the European Union’s Horizon 2020 SME Instrument projects under the project Laser-Histo with grant agreement No H2020-SMEINST-2-2016-2017.